(6-t^2)/(6+t^2)^2=0

Simple and best practice solution for (6-t^2)/(6+t^2)^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6-t^2)/(6+t^2)^2=0 equation:



(6-t^2)/(6+t^2)^2=0
Domain of the equation: (6+t^2)^2!=0
t∈R
We multiply all the terms by the denominator
(6-t^2)=0
We get rid of parentheses
-t^2+6=0
We add all the numbers together, and all the variables
-1t^2+6=0
a = -1; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-1)·6
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-1}=\frac{0-2\sqrt{6}}{-2} =-\frac{2\sqrt{6}}{-2} =-\frac{\sqrt{6}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-1}=\frac{0+2\sqrt{6}}{-2} =\frac{2\sqrt{6}}{-2} =\frac{\sqrt{6}}{-1} $

See similar equations:

| 12x^2-176x+405=0 | | (1/2x)+(31/4x+4)+(21/2x-10)=180 | | 5e=14|2e | | 3x^2-x=x+1 | | -86-10x=-6x+26 | | (1/2x)+(31/4x4)+(21/2x-10)=180 | | 2y+3.5=120 | | -111-x=10x+186 | | 4-2x=6x-20 | | 19w+1=20 | | 18x+9-2x=-2 | | 2(w+8)=18 | | 224=x-75 | | 7y+19=82 | | 12x-21=10x+41 | | -9k+5k=-28 | | 3x-5+2=x-9=193 | | 6s+11=17 | | 8=11p+10p | | 10=3w+8 | | 8p+9=17 | | -27+10x=5x+56 | | 2(n+5=-2) | | 6x=25-5 | | 6(w+2)=18 | | 4(3p+5)=80 | | w/2+17=31 | | 14-3*y=26 | | 2t+14=16 | | 5(u+1)=20 | | -144+7x=-5x+36 | | 4(3+2n)=52 |

Equations solver categories